

SIMULATION AND EXPERIMENTAL VALIDATION OF AN INDUCTIVELY HEATED SOLID-CORE NUCLEAR THERMAL ROCKET MODEL

Samantha Cendro, Trey Cranney, Spencer Powers, Connor Powers, Branden Kretschmer, Diego Ochoa-Cota, Micah Pratt

The Advanced Spacecraft Propulsion and Energy (ASPEN) Laboratory

AIAA Propulsion and Energy, August 24-26 2020

Copyright © Samantha Cendro, ASPEN Laboratory

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

- •First project of USC's Advanced Spacecraft Propulsion and Energy (ASPEN) Laboratory
- •Three phase campaign to model solid core Nuclear Thermal Rocket Engines (NTRE's)
- •NTRE's:
 - •Show promise for high thrust and high efficiency missions
 - •Can compete with conventional chemical engines in terms of payload and mission time

Hyperion-I Campaign Phases

- 3/16" OD 316SS Tube - T_{exit} < 350 K

Phase I

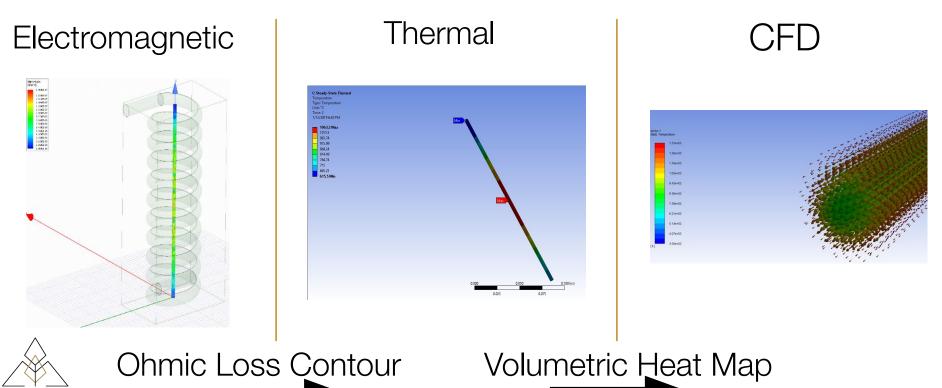
- Maraging Steel
- 7 teardrop channels
- T $_{exit}$ < 500 K

Phase III

- Maraging Steel
- 61 teardrop channels
- $T_{exit} = 900 \text{ K}$

Phase I Purpose and Goals

- •Assess functionality of experimental design
 - •Feed system
 - Inductive heating method
- •Temperature and pressure data acquisition
 - •∆T
 - •Exit temperature


Compared to ANSYS multiphysics model outputs

•Remedy systems for Phases II and III if needed

ANSYS Multiphysics Model

ΔSPΞN

5

ANSYS Model Results

Working Fluid: Nitrogen

Inlet Temp: 300 K (26.86 °C)

Outlet Temp: 340 K (66.85 °C)

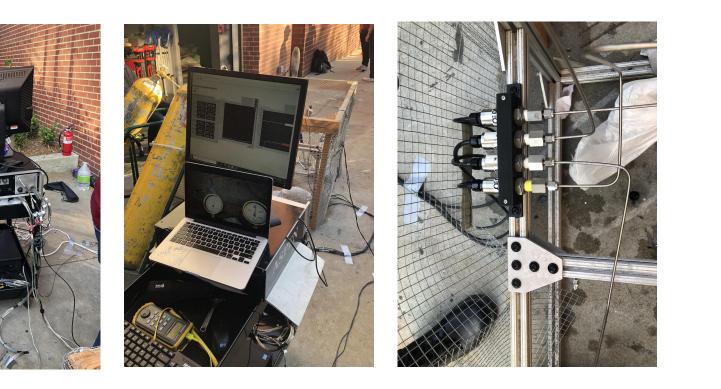
Max Test Article Temperature: 400 K (126.85 °C)

Experimental Setup

- Test stand designed for all Hyperion I Phases
- Feed System leak and proofed prior to hot flow

	Phase I	Phase III	
Test Duration	15 min	15 min	
Mass Flow Rate	0.00025 kg/s	0.05 kg/s	
Inlet Pressure	500 psi	1000 psi	
Induction Heater Current	306-310 Amps	N/A	

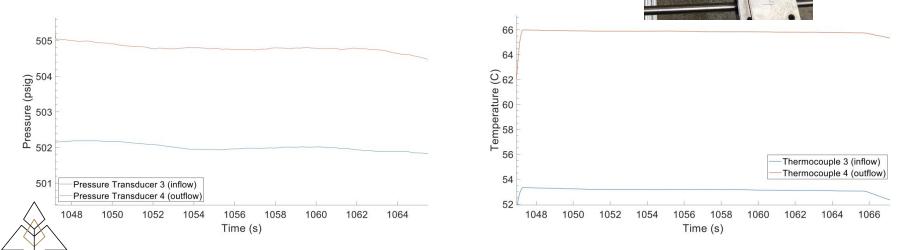
Experimental Setup – Feed System



Main Data Acquisition System: NI USB-6211 Omega K-Type thermocouples and Omega PX309 pressure transducers at the following stations:

- Before the regulator
- After the regulator
- Before the test article
- After the test article

Experimental Setup – Data Acquisition



Results and Discussion

 $\Delta P: 3 \pm 2 \text{ psi}$ Inlet Temperature: $53 \pm 2 \degree C$ Outlet Temperature: $66 \pm 2 \degree C$ $\Delta T: 13 \pm 4 \degree C$

 Δ S P \equiv N

- Hardware design and operation of induction furnace worked nominally
- ΔT result must be determined from another trial for comparison with ANSYS model
- Phase II and Phase III testing is possible with the current hardware with only small modifications necessary

	Experiment	ANSYS
T _{outlet}	66±2 ° C	66.85 ° C
ΔΤ	13±4 ° C	40 ° C

Phase II

- Objective: Scaled-down version of full core testing
- Addition of load cell to measure thrust and lsp

Acknowledgements

- Dr. Charles Radovich, Dr. Paul Giuliano, and Dr. Matthew Gilpin from the University of Southern California
- ASPEN's general members
- USC Viterbi School of Engineering
- Northrop Grumman

