

#### Optimizing Adamantane Plasma Thruster Efficiency via 2-D Simulations

Haron Samhan <sup>+</sup>, Zolia Sarmiento <sup>+</sup>

Advisors: Lubos Brieda <sup>§</sup>; Matthew Gilpin <sup>¶</sup>

† Student in AME, University of Southern California

*‡ Student in CHE, University of Southern California* 

§ Part-time Lecturer of Astronautical Engineering, University of Southern California

¶Associate Professor of Aerospace and Mechanical Engineering Practice, University of Southern California



University of Southern California

## Motivations





#### Advanced Spacecraft Propulsion & Energy Lab

- Need to solve common issues in electric propulsion
- Developing Adamantane-based electric propulsion thruster at USC ASPEN Lab
- Need to characterize the thruster





#### **Base Geometry**







University of Southern California



### **Base Geometry**

- Derive plasma characteristics
- Compare thrust, specific impulse, plasma density, mass flux, exit velocity





## Starfish

- Two-dimensional, open-source plasma & rarefied gas simulation code
- Models low-density plasmas using:
  - Electrostatic Particle-in-Cell (ES-PIC)
  - Monte Carlo Collisions (MCC)
- Operates on structured Cartesian or body-fitted stretched meshes
- Used for simulating thruster plumes and other plasma dynamics









- Electrostatic Particle-In-Cell:
  - Particles grouped into
    "macroparticles," representing
    velocity distribution samples
  - Simulates charged particles using the Lorentz force instead of direct Coulomb interactions
  - Assumes low-density plasma → negligible self-induced magnetic fields



100 1000 10000100000 le+6 le+7 le+8 le+9 le+10 le+11 le+12 le+13 le+14 le+15 le+16 le+17 le+18 le+19



5



9.3e+20



# How Plasma is Modeled

- Monte Carlo Collisions:
  - Models plasma-neutral collisions probabilistically
  - Includes charge exchange, ionization, and elastic scattering
  - Determines how ions interact with neutrals and walls



Flowchart of particle-in-cell Monte Carlo collision simulation [6].



## **Input Variables**



- Boundaries and Inputs
  - Specified by material
  - Material type: insulator, anode, cathode
  - Charge value



• Plasma Potential (base thruster)



- Electron Density (base thruster)
  - Moves in the direction of the propellant chamber



University of Southern California

#### Geometries



- Base: Reference geometry to set baseline expectations
- Cone: Sloped walls to naturally direct plasma to orifice
- External Cathode: Combat carbon buildup in ionization chamber
- Enlarged orifice: Larger exit area  $\rightarrow$  more thrust



Four iterations of the thruster used for simulations.









Mass Flux over cone geometry over 600 nanoseconds



University of Southern California





Mesh Area



University of Southern California





**Inserting Slice** 



University of Southern California





Inserting Clip



University of Southern California





Enlarged Orifice

Base Model



**External Cathode** 

Mass Flux over each geometry at 600 nanoseconds



University of Southern California

13

Cone

ase Model







Properties for plasma and propellant flow from simulation of different geometries.

| Internal<br>Geometry | Specific<br>Impulse<br>(I <sub>sp</sub> , s) | Mass Flux<br>(j <sub>mm</sub> , kg / m <sup>2</sup> s) | Exit Velocity<br>( <i>V<sub>e</sub></i> , m / s) | Thrust<br>( <i>F</i> , N) |
|----------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------|
| Base Thruster        | 1,100                                        | 2.4 x 10 <sup>-10</sup>                                | 36,000                                           | 1.3 x 10 <sup>-11</sup>   |
| Large Orifice        | 4,000                                        | 2.1 x 10 <sup>-9</sup>                                 | 40,000                                           | 5.6 x 10 <sup>-9</sup>    |
| External<br>Cathode  | 5,000                                        | 3.1 x 10 <sup>-13</sup>                                | 49,000                                           | 4.6 x 10 <sup>-13</sup>   |
| Cone                 | 3,600                                        | 1 x 10 <sup>-9</sup>                                   | 36,000                                           | 4.1 x 10 <sup>-10</sup>   |



14 University of Southern California

#### **Results**







#### Enlarged Orifice

- Largest Thrust

#### External Cathode

- Largest Specific Impulse

Mass Flux at 600 nanoseconds





#### **Future Work**

- Adamantane fragmentation and ionization
  - $\circ \quad \mbox{Reaction Rates} \quad$
- Sublimation Rate
- Integrating Starfish area to physical thruster







### **Future Work**

- Continue simulating new geometries
- Reference with test team













# **Q & A**

#### **Contact Information**

eflo@usc.edu

samhan@usc.edu 🔶 zsarmien@usc.edu



University of Southern California

#### **Bonus slides**

$$j_{mp} = \frac{particles}{seconds (area)} = \text{``nd.adm+'' * ``u.adm+_v.adm+_X''}$$
(1)

$$j_{mm} = j_{mp} \frac{M}{N_A} \tag{2}$$

$$\dot{m} = j_{mm} A_T = j_{mm} (\pi r^2)$$
 (3)

$$F = \dot{m}V_{e} \tag{4}$$

$$I_{sp} = \frac{F}{\dot{m}g}$$
(5)





## **Bonus Slides**



- Typical thrust of an ion thruster : about 240 mN
- Typical specific impulse of an ion thruster. 4200 s



### **Bonus Slides**



Additional properties for plasma and propellant flow from simulation of different geometries.

| Internal<br>Geometry | Plasma Density<br>( <i>n<sub>adm</sub></i> , particles / m <sup>3</sup> ) | Particle Flux<br>(j <sub>mp</sub> , particles / m² s) | Mass Flow Rate<br>( <i>ṁ ,</i> kg / s) |
|----------------------|---------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|
| Base<br>Thruster     | 2.4 x 10 <sup>13</sup>                                                    | 1.1 x 10 <sup>15</sup>                                | 3.7 x 10 <sup>-16</sup>                |
| Large<br>Orifice     | 5.1 x 10 <sup>13</sup>                                                    | 9.3 x 10 <sup>15</sup>                                | 1.4 x 10 <sup>-13</sup>                |
| External<br>Cathode  | 1.5 x 10 <sup>11</sup>                                                    | 1.4 x 10 <sup>12</sup>                                | 9.4 x 10 <sup>-18</sup>                |
| Cone                 | 1.2 x 10 <sup>11</sup>                                                    | 4.4 x 10 <sup>15</sup>                                | 5.8 x 10 <sup>-18</sup>                |



University of Southern California

#### **Bonus Slides**



Improve Electric Field Assumptions phi





## References



[1] Brieda, Lubos. "Particle in Cell Consulting, LLC." PICC Blog RSS, www.particleincell.com/. Accessed 22 Feb. 2025.

[2] Goebel, Dan M., and Ira Katz. Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Jet Propulsion Laboratory, California Institute of Technology, Mar. 2008,

descanso.jpl.nasa.gov/SciTechBook/series1/Goebel\_\_cmprsd\_opt.pdf.

[3] C. K. Birdsall, "Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC," in IEEE Transactions on Plasma Science, vol. 19, no. 2, pp. 65-85, April 1991, doi: 10.1109/27.106800.

[4] National Center for Biotechnology Information. "PubChem Compound Summary for CID 9238, Adamantane" PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Adamantane. Accessed 24 February, 2025.

[5] "Gridded Ion Thrusters (next-C)." NASA, NASA, 25 Jan. 2023,

www1.grc.nasa.gov/space/sep/gridded-ion-thrusters-next-c/#thrusters.

[6] Shu, Panpan & Zhao, Pengcheng. (2024). Comparative analysis of dielectric surface discharge characteristics in Gaussian and sinusoidal microwave electric fields. Physics of Plasmas. 31. 10.1063/5.0207152.

