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Motivations
• Need to solve common issues in electric 

propulsion
• Developing Adamantane-based electric 

propulsion thruster at USC ASPEN Lab
• Need to characterize the thruster

Advanced Spacecraft Propulsion & Energy Lab
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Base Geometry
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Base Geometry
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● Derive plasma 
characteristics

● Compare thrust, specific 
impulse, plasma density, 
mass flux, exit velocity



Starfish
• Two-dimensional, open-source plasma & rarefied gas simulation code

• Models low-density plasmas using:

○ Electrostatic Particle-in-Cell (ES-PIC)

○ Monte Carlo Collisions (MCC)

• Operates on structured Cartesian or body-fitted stretched meshes

• Used for simulating thruster plumes and other plasma dynamics
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How Plasma is Modeled
• Electrostatic Particle-In-Cell:

○ Particles grouped into 
"macroparticles," representing 
velocity distribution samples

○ Simulates charged particles using the 
Lorentz force instead of direct 
Coulomb interactions

○ Assumes low-density plasma → 
negligible self-induced magnetic 
fields
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How Plasma is Modeled
• Monte Carlo Collisions:

○ Models plasma-neutral collisions 
probabilistically

○ Includes charge exchange, 
ionization, and elastic scattering

○ Determines how ions interact 
with neutrals and walls
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Flowchart of particle-in-cell Monte 
Carlo collision simulation [6].
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Input Variables

• Plasma Potential (base thruster)

• Electron Density (base thruster)
- Moves in the direction of the 

propellant chamber
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• Boundaries and Inputs
○ Specified by material
○ Material type: insulator, anode, cathode
○ Charge value

anode

cathode
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Four iterations of the thruster used for simulations.

Geometries
• Base:  Reference geometry to set baseline expectations

• Cone: Sloped walls to naturally direct plasma to orifice

• External Cathode: Combat carbon buildup in ionization chamber

• Enlarged orifice:  Larger exit area → more thrust 
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Results

Mass Flux over cone geometry over 600 nanoseconds

9
10



Data Processing

Mesh Area
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Data Processing

Inserting Slice
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Data Processing

Inserting Clip
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Data Processing

Mass Flux over each geometry at 600 nanoseconds

Enlarged Orifice Base Model

ConeExternal Cathode
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Internal 
Geometry

Specific 
Impulse
(Isp , s)

Mass Flux
(jmm , kg / m2 s)

Exit Velocity
(Ve , m / s)

Thrust
(F, N)

Base Thruster 1,100 2.4 x 10-10 36,000 1.3 x 10-11

Large Orifice 4,000 2.1 x 10-9 40,000 5.6 x 10-9

External 
Cathode

5,000 3.1 x 10-13 49,000 4.6 x 10-13

Cone 3,600 1 x 10-9 36,000 4.1 x 10-10 

Properties for plasma and propellant flow from simulation of different geometries.
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Results
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Results

Mass Flux at 600 nanoseconds

Enlarged Orifice
- Largest Thrust

External Cathode
- Largest 

Specific 
Impulse
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Future Work
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● Adamantane fragmentation and ionization
○ Reaction Rates

● Sublimation Rate
● Integrating Starfish area to physical thruster
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Future Work
● Continue simulating new geometries
● Reference with test team
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Q & A

Contact Information
eflo@usc.edu    ◆    samhan@usc.edu    ◆    zsarmien@usc.edu
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Bonus slides
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Bonus Slides
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● Typical thrust of an ion thruster : about 240 mN
● Typical specific impulse of an ion thruster: 4200 s



Bonus Slides
Additional properties for plasma and propellant flow from simulation of different geometries.

Internal 
Geometry

Plasma Density
(nadm , particles / m3)

Particle Flux
(jmp , particles / m2 s)

 Mass Flow Rate
(ṁ , kg / s)

Base 
Thruster

2.4 x 1013 1.1 x 1015 3.7 x 10-16

Large 
Orifice

5.1 x 1013 9.3 x 1015 1.4 x 10-13

External 
Cathode

1.5 x 1011 1.4 x 1012 9.4 x 10-18

Cone 1.2 x 1011 4.4 x 1015 5.8 x 10-18
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Bonus Slides
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● Improve Electric Field Assumptions
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