

Testing of a Solid Fuel Adamantane Ion Thruster

The Asteria Project

Kayden Elmer-Schurr[†]; Olivia Kukar[†]; Sebastian Matiauda^{*}; Dev Pokhriyal^{*}; Kayden Cutchins[†]; Jonathan Fisher[†]

Advisors: Lubos Brieda[‡]; Matthew Gilpin[§]

† Student in AME/ASTE/CHE, University of Southern California

* Alumni, University of Southern California

‡ Part-time Lecturer of Astronautical Engineering, University of Southern California

§ Associate Professor of Aerospace and Mechanical Engineering Practice, University of Southern California

Who We Are

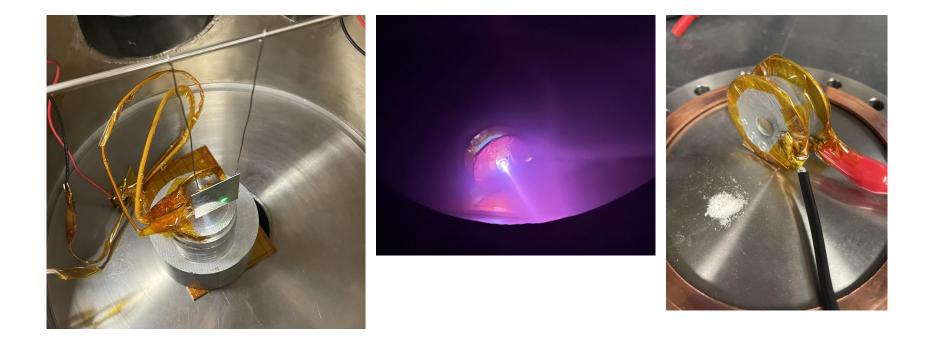
Advanced Spacecraft Propulsion & Energy Lab

- Undergraduate student-led organization, founded in 2018
- Focused on educating students in industry-applicable skills, introducing them to state-of-the-art propulsion technology, and performing cutting-edge research

Motivation

• Provide undergraduate students experience in working with plasma physics, vacuum facilities, and spacecraft electric propulsion

Asteria Project Objectives:


- Developing an "electric solid rocket" ion-gun type thruster for use on Cubesats
- Combines the high Isp of electric propulsion thrusters with the tankless design of chemical rockets
- Offers test bed for conducting research into molecular propellants and the potential use of solid fuel propellants
- Longer term, demonstrate bench-top and possibly flight integration with ISE/SERC satellites

Project Description

The Asteria Project

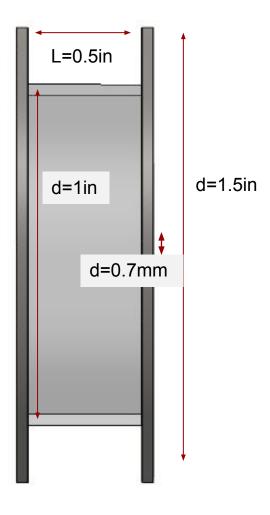
- Evaluate effectiveness of solid Adamantane $(C_{10}H_{16})$ as a propellant for EP
- Utilizing a low power (10W), high-voltage power supply

Lab Build-Up

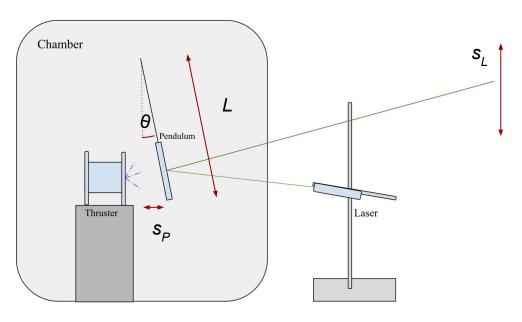
- Sourced & learn to operate vacuum chambers
- Started with Bell Jar to produce initial plasma
- Built specialized chamber for testing solely operating on roughing pump
- Moved to a large shared chamber to access turbo pump
- Department and sponsor funded

Initial Test Setup

- Manage sublimation rate of adamantane with pump down time
- Building a proof-of-concept thruster using off the shelf parts
- Learn how to control outgassing & electrostatic effects



Thruster Design



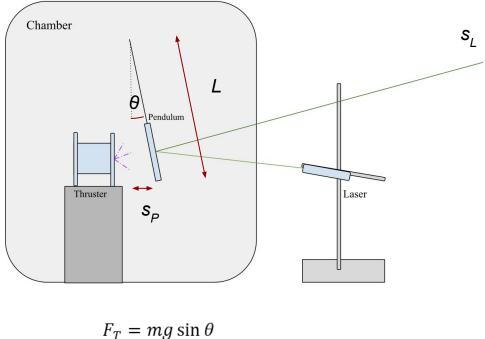
Thrust Measurement

- Indirect thrust measurement with simple pendulum
- Horizontal displacement of the pendulum converted to vertical displacement of a laser
- Operating at 0.3kV and 50mTorr
- Roughing pump only
- Grounded pendulum and chamber

$$F_{T} = mg \sin \theta$$

$$F_{T} = \frac{mgs_{P}}{L}$$

$$F_{T} = \frac{mgCs_{L}}{L}$$


$$s_{P} = Cs_{L}$$

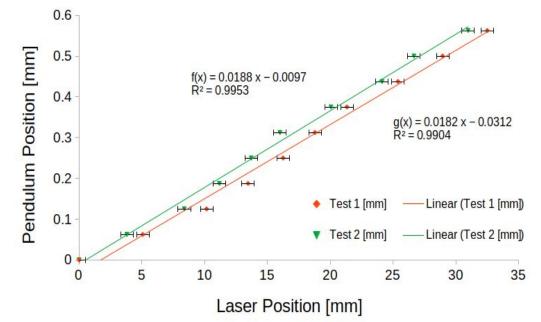
Thrust Measurement

$$F_T = mg \sin \theta$$

$$F_T = \frac{mgs_P}{L}$$

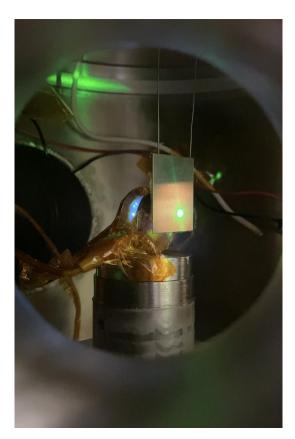
$$F_T = \frac{mgCs_L}{L}$$

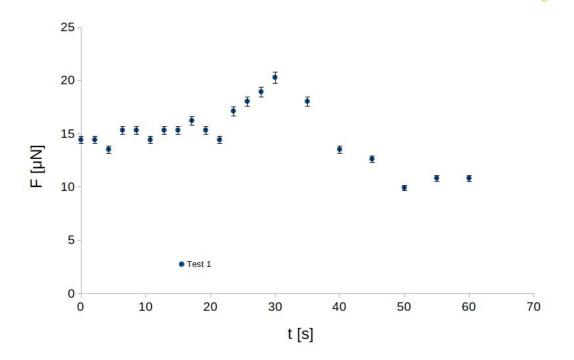
$$s_P = Cs_L$$



Calibration

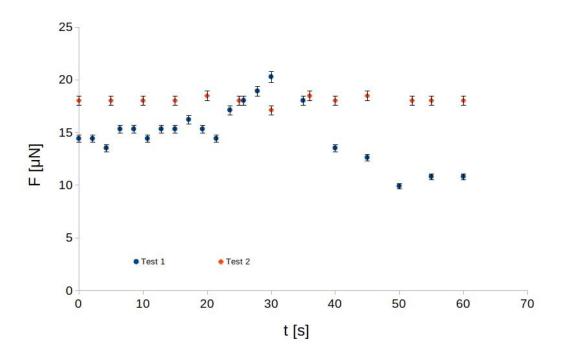
- Laser position is calibrated using a micrometer to displace the pendulum
- 1/16 mm horizontal displacement of the pendulum





Calibration Constant, *C* = 0.0185±0.0006 ~50x Signal Amplification

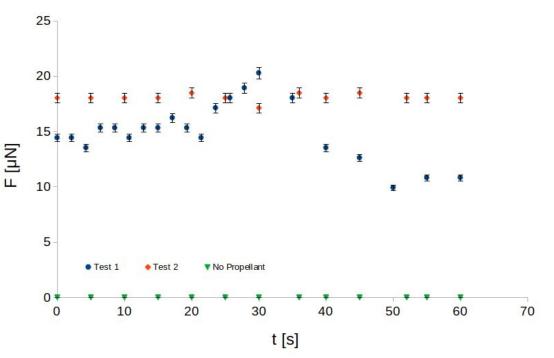
Results



Average, Test 1: 15±8 μN Peak: 20 μN

Results

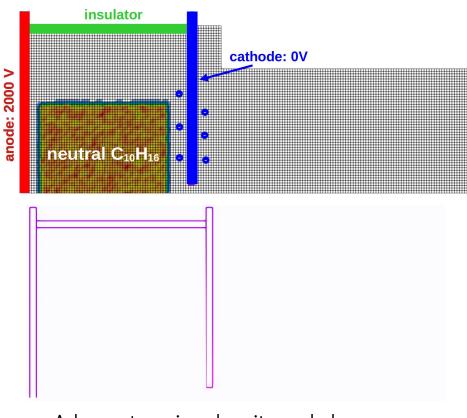
- Secondary test had better performance
- More steady thrust


Average, Test 2: 18±3 μN Peak: 19 μN

Results

- Test was conducted with no adamantane in the thruster and resulted in no displacement of the pendulum
- Demonstrates no electrostatic attraction, i.e. no thrust without adamantane

Average, No Propellant: 0±3 μN Limited by instrument resolution

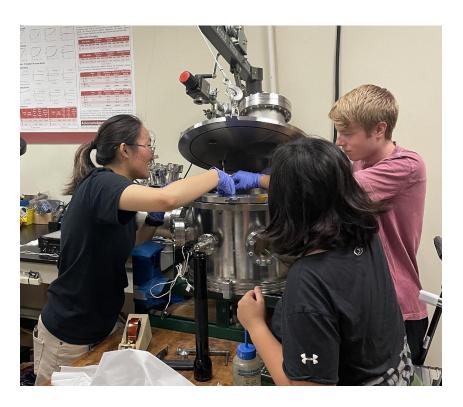


Numerical Simulations

- Eventually to be used for thruster design optimization
- Using 2D ES-PIC code (Starfish) with all species modeled as particles
- Internal cavity filled with neutral adamantane molecules
- Kinetic electrons with artificially increased mass injected at cathode
- Using MCC algorithm to model ionization, cross-section given by Holste, et al.¹
- Loss mechanisms not yet included

¹ K. Holste, et al.; Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. *Rev. Sci. Instrum.* 1 June 2020; 91 (6): 061101. doi: 5.0010134

Adamantane ion density and plume velocity streamlines



What We Accomplished

- Built up a vacuum lab for undergraduate use
- Learned to assemble, operate, and perform vacuum experiments
- Successfully demonstrated & indirectly measured thrust from a solid adamantane fueled EP device

Future Work

- Thrust Stand Improvements
 - Direct thrust measurement with inverted pendulum
- Instrumentation for V(t) and I(t)
- Thruster Redesign (short term)
 - Improve seal on end caps
 - Revision to reduce contamination from repeated testing
- Loss mechanisms included in larger scale simulations
- Full system design for integration on cubesat with ability to collect thruster data from ground (long term)
 - Miniaturization
 - Integrated power supply
 - Multi-thruster design
 - Hot wire filament for neutralization source
 - Valve/membrane for fuel storage

Q & A

elmersch@usc.edu

okukar@usc.edu 🔶 uscaspen@gmail.com

