
Asteria Project Updates
The goal of this project is to produce a solid-fuel adamantane plasma thruster to be implemented on a satellite design. The overview of this project can be divided into four main stages of modeling and hardware testing . A small plasma thruster will be constructed and placed in a vacuum chamber to produce a plasma bloom. We hope to run a numerical study to increase the efficiency of the thruster, research the effectiveness of adamantane as a fuel source, and eventually produce a full-scale working propulsion device.

January/Feburary
Initial Thruster Built
Two simplistic experimental thruster designs were created using two metal washers and clear plastic tubing. We attempted to minimize the output orifice to the best degree to ensure a plasma bloom could be seen. The plastic tubing is used to house a small amount of adamantane to limit contamination in the chamber.
March
We have Plasma!
The image to the right is the first test of the smaller thruster design. There was a large amount of outgassing from the wires and our office is still too large to clearly see the plasma bloom produced by the adamantane. We believe the chamber should be pumped down to 50mTorr to better our results.


April
Thrust Test
By repositioning the wires inside the chamber and pumping down to 50mTorr we have been able to limit some of the outgassing. Additionally, we have further shrunk the output orifice for a more defined plasma bloom. To test for thrust we have positioned a small piece of aluminum foil strung from a protractor to measure displacement. Due to the small size of the thruster, the displacement is currently too small to measure with our current setup. Efforts are being made to devise a way to measure the pixel displacement in the videos collected from each test.
Next Steps
Improve Thrust Test and Production of Langmuir Probe
We plan to continue to improve our thrust test to find better ways to measure the small displacement caused by the plasma bloom. In addition, we are making efforts to produce a simplistic Langmuir probe to measure the plasma environment and get enough data to produce a simulation of our current thruster. This probe will most likely consist of an OA4G tube or similar cold cathode, a small power supply to generate discharge, and a function generator paired with an oscilloscope to measure the Langmuir Trace.
